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Abstract: - In this work is presented one new approach for processing of groups of multispectral (MS) 
images, called Hierarchical Adaptive Principal Component Analysis (HAPCA). The aim is to 
decorrelate each group of N multispectral images, obtained after dividing the whole set into sub-
groups of 2 or 3 images each. In result, the basic part of the power of the images in one group is 
concentrated in a small number of eigen images only. This is achieved using the well-known method 
Principal Component Analysis (PCA) with transform matrix of size NN. In this case however, the 
method implementation needs high computational power, because it is based on iterative algorithms. 
Unlike it, the 2-level HAPCA permits to use transform matrices of size 33 (or 22), instead of the 
PCA transform matrix of size 99 (or 88 correspondingly), which makes the needed computational 
complexity 2 times lower in average. One more advantage of the new algorithm is that it permits 
parallel processing of each image sub-group in all hierarchical levels. In this work are also given some 
experimental results for the HAPCA algorithm applied on groups of MS images, which confirm the 
high decorrelation obtained. The proposed algorithm could be used as a basis for the creation of new 
algorithms for efficient compression of sets of MS and medical images and video sequences, for 
minimization of objects feature space in sequences of images, etc.  
 
Key-Words: - Image processing, Image segmentation, Image contents analysis, Lossless image 
compression, Histogram modification, Inverse pyramid decomposition, Lossy image compression. 
 
 
1 Introduction 
The contemporary research in different application 
areas sets the task of the efficient processing and 
archiving of MS images as one of high importance. 
As it is well-known, MS images are characterized by 
very high spatial, spectral, and radiometric resolution 
and, hence, by ever-increasing demands of 
communication and storage resources. Such demands 
often exceed the system capacity like, for example, 
in the downlink from satellite to Earth stations, 
where the channel bandwidth is often much inferior 
to the intrinsic data rate of the images, some of 
which must be discarded altogether. In such situation 
the high-fidelity image compression is a very 
appealing alternative. As a matter of fact, there has 
been intense research activity on this topic 
[4,5,7,14,18], focusing, particularly, on transform-
coding techniques, due to their good performance 

and limited computational complexity. Linear 
transform coding, however, does not take into 
account the nonlinear dependences existing among 
different bands, due to the fact that multiple land 
covers, each with its own interband statistics, are 
present in a single image. Based on this observation, 
a class-based coder was proposed in [4] that address 
the problem of interband dependences by segmenting 
the image into several classes, corresponding as 
much as possible to the different land covers of the 
scene. As a consequence, within each class, pixels 
share the same statistics and exhibit only linear 
interband dependences, which can be efficiently 
exploited by the conventional transform coding. 
Satellite-borne sensors have ever higher spatial, 
spectral and radiometric resolution. With this huge 
amount of information comes the problem of dealing 
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with large volumes of data. The most critical phase is 
on-board the satellite, where acquired data easily 
exceed the capacity of the downlink transmission 
channel, and often large parts of images must be 
simply discarded, but similar issues arise in the 
ground segment, where image archival and 
dissemination are seriously undermined by the sheer 
amount of data to be managed. The reasonable 
approach is to resort to data compression, which 
allows reducing the data volume by one and even 
two orders of magnitude without serious effects on 
the image quality and on their diagnostic value for 
subsequent automatic processing. To this end, 
however, is not possible to use the general purpose 
techniques as they do not exploit the peculiar 
features of multispectral remote-sensing images, 
which is why several ad hoc coding schemes have 
been proposed in recent years. The transform coding 
is one of the most popular approaches for several 
reasons. First, transform coding techniques are well 
established and deeply understood; they provide 
excellent performances in the compression of 
images, video and other sources, have a reasonable 
complexity and besides, are at the core of the famous 
standards JPEG and JPEG2000, implemented in 
widely used and easily available coders.  

The common approach for coding MS images [3, 
8] is to use some decorrelating transforms along the 
spectral dimension followed by JPEG2000 on the 
transform bands with a suitable rate allocation 
among the bands. Less attention has been devoted to 
techniques based on vector quantization (VQ) 
because, despite its theoretical optimality, VQ is too 
computationally demanding to be of any practical 
use. Nonetheless, when dealing with multiband 
images, VQ is a natural candidate, because the 
elementary semantic unit in such images is the 
spectral response vector (or spectrum, for short) 
which collects the image intensities for a given 
location at all spectral bands. The values of a 
spectrum at different bands are not simply correlated 
but strongly dependent, because they are completely 
determined (but for the noise) by the land covers of 
the imaged cell. This observation has motivated the 
search for constrained VQ techniques [13], which are 
suboptimal but simpler than full-search VQ, and 
show promising performances. MS images require 
large amounts of storage space, and therefore a lot of 
attention has recently been focused to compress 
these images. MS images include both spatial and 
spectral redundancies. Usually we can use vector 
quantization, prediction and transform coding to 
reduce redundancies. For example, hybrids 
transform/VQ coding scheme is proposed [13]. 
Instead, Karhunen-Loeve transform (KLT) is used to 

reduce the spectral redundancies, followed by a two-
dimensional (2D) discrete cosine transform (DCT) to 
reduce the spatial redundancies [5]. A quad-tree 
technique for determining the transform block size 
and the quantizer for encoding the transform 
coefficients was applied across KLT-DCT method 
[18]. In [13] and [14] the researchers use a wavelet 
transform (WT) to reduce the spatial redundancies 
and KLT to reduce the spectral redundancies, and 
then encoded using the 3-dimensional (3D) SPIHT 
algorithm [9]. The state-of-the-art analysis shows 
that despite of the vast investigations and various 
techniques used for the efficient compression of MS 
images, a recognized general method able to solve 
the main problems is still not created.       

One of the most efficient methods for 
decorrelation and compression of groups of images 
is based on the KLT, also known as Hotelling 
transform, or PCA [6, 11, 12, 24-35]. For its 
implementation the pixels of same spatial position in 
a group of N images compose an N-dimensional 
vector. The basic difficulty of the PCA 
implementation is related to the large size of the 
covariance matrix. For the calculation of its 
eigenvectors is necessary to calculate the roots of a 
polynomial of nth degree (characteristic equation) 
and to solve a linear system of N equations. For large 
values of N, the computational complexity of the 
algorithm for calculation of the transform matrix is 
significantly increased.  

One of the possible approaches for reduction of 
the computational complexity of PCA for N-
dimensional group of images is based on the so-
called “Hierarchical Adaptive PCA” (HAPCA).  
Unlike the famous Hierarchical PCA (HPCA) [22], 
this transform is not related to the image sub-blocks, 
but to the whole image from one group. For this, the 
HPCA is implemented through dividing the images 
into groups of length, defined by their correlation 
range. Each group is divided into sub-groups of 3 or 
2 images each, on which is applied Adaptive PCA 
(APCA), of size 33 or 22 [15, 36]. This transform 
is performed using equations, which are not based on 
iterative calculations, and as a result, they have lower 
computational complexity. To obtain decorrelation 
for the whole group of images is necessary to use 
АPCA of size 33 or 22, which to be applied in 
several consecutive stages (hierarchical levels), with 
rearranging of the obtained intermediate eigen 
images after each stage. In result is obtained a 
decorrelated group of "eigen" images, on which 
could be applied other combined approaches to 
obtain efficient compression through lossy or 
lossless coding.  
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The paper is arranged as follows: in Section 2 is 
presented the principle for coding MS images 
through hierarchical АPCA, in Section 3 are given 
some experimental results, in Section 4 is evaluated 
the computational complexity of the 2-level 
HAKLT, and Section 5 is the Conclusion. 

 
 

2 Principle for Decorrelation of MS 
Images Through Hierarchical АPCA  
The new algorithm was developed for processing 
groups of MS images using adaptive РСА (АРСА) 
with transform matrix of size 33 or 22. The size 
choice is concerted with the length of the correlation 
range for each group, which usually contains from 2 
up to 12 images. 
 
 
2.1 Algorithm for Hierarchical АPCA with 
Transform Matrix of size 33  
The processed group of MS images (pictures) is 
divided into smaller groups (GOP) of (for example) 
9 images each, for which is supposed that they are 
highly correlated. On the other hand, each GOP is 
further divided into 3 sub-groups.  

As it is shown on Fig. 1, on each sub-group of 3 
images from the first hierarchical level of HAPCA is 
applied АPCA with matrix of size 33. In result are 
obtained 3 "eigen" images (principal components), 
colored in yellow, blue and green correspondingly. 
After that, these eigen images are rearranged so that 
the first sub-group of 3 eigen images to comprise the 
first images from each group, the second group of 3 
eigen images – the second images from each group, 
etc. For each GOP of 9 intermediate eigen images in 
the first hierarchical level is applied in similar way 
the next APCA, with a 33 matrix, on each sub-
group of 3 eigen values.  In result are obtained 3 new 
eigen images (i.e. the eigen images of the group of 3 
intermediate eigen images), colored in yellow, blue, 
and green correspondingly in the second hierarchical 
level. Then the eigen images are rearranged again so, 
that the first group of 3 eigen images to contain the 
first images from each group before the 
rearrangement; the second group of 3 eigen images – 
the second image before the rearrangement, etc. In 
result is obtained efficient decorrelation for the 
processed group of images, which permits efficient 
compression and restoration, since HAPCA is a 
reversible transform. For this, however, is needed the 
information for the transform matrix for each triad of 
images and for all hierarchical levels - 6 matrices for 
one GOP in total. 

2.2. Algebraic Method for Calculation of 
Eigen Images Through АPCA with a 33 
Matrix  
From each group of 3 MS images of S pixels each, 
shown on Fig. 2, are calculated the vectors 

  t
s3s2s1s CCCC ,,


 for s=1,2,..,S (on the figure are 

shown the vectors for the first 4 pixels only: 
  ,,, t

3121111 CCCC 


  ,,, t
3222122 CCCC 


 

  t
3323133 CCCC ,,


 and   t

3424144 CCCC ,,


). 

1C


2C


3C


4C


 
Fig. 2. Sub-group of 3 MS images from original GOP 

Each vector is transformed into corresponding 
vectors t

s3s2s1s LLLL ],,[


 through АPCA with the 
matrix [] of size 33 [15]. Its elements ij are 
defined below:  

1. The covariance matrix [KC] of size 33 for 
vectors sC


 is calculated: 

   

  ,






















 


333231

232221

131211
t
cc

S

1s

t
ssC

kkk
kkk
kkk

mmCC
S
1K 

  (1) 

where t
321c CCCm ],,[  is the mean vector. Here 





S

1s
ss xS1xEx )/()( ; E() - the operator for 

calculation of the mean value of xs for s=1,2,..,S.  
2. The elements of the mean vector cm and of the 

matrix [KC] are defined in accordance with the 
relations:  

),( s11 CEC   ),( s22 CEC   ),( s33 CEC           (2) 

 

,)C-CEkk

  ,CCEkk

  ,CCEkk

2
3

2
s3333

2
2

2
s2222

2
1

2
s1111

()(

)()(

)()(







                                  (3) 

 
),)(()(

),)(()(

32s3s263223

21s2s142112

CCCCEkkk

CCCCEkkk




       (4)   

 ).)(()( 31s3s153113 CCCCEkkk          (5)    
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Fig. 1. Processing of a group of MS images with 2-level Hierarchical Adaptive PCA with a matrix of size 33 

 
3. The eigen values 321  ,,  of the matrix [KC] 

are defined in accordance to the solution of the 
characteristic equation: 

   ,||det 0cbak 23
jiji               (6) 

where: 





 j.i  0

j,i  1
ji ,

,  

       

.)kkk2kk(kkkkkkkc

),kk(kkkkkkkb

), kk(ka

654321
2
43

2
52

2
61

2
6

2
5

2
4323121

321







      (7)                                                    

Since the matrix [KC] is symmetric, its eigen values 
are real numbers. For their calculation could be used 
the equations of Cardano for “casus irreducibilis” 
(i.e., the so-called “trigonometric solution”) [37]: 

    

 
3
a

33
p

2

 ;
3
a

33
p

2

 ;
3
a

33
p

2

3

2

1







 









 



















cos

cos

cos

                          (8) 

for ;0321        

    

,  3p2q

   . 0b)3/(a-p

c,  3/)ab()3(a/2q

3

2

3





 





)/|(|/arccos

     (9) 
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4. The eigen vectors 321 


,,  of the covariance 
matrix [KC] are the solution of the system of 
equations below: 

    mmmCK 


][  and 1
3

1i

2
mi

2
m 






,      (10) 

for  m=1,2,3.                                              

Eq. 10 follows from the condition for orthogonality 
and normalization of the 3 eigenvectors: 









. k  sfor  0
; k  sfor  1

ik

3

1i
isk

t
s 


for s, k =1,2,3   (11) 

The solution of the system of equations (Eq. 10) is 
used to calculate the components of mth eigenvector 

,],,[ t
m3m2m1m  


 which corresponds to the 

eigen value m : 

    mmm3mmm2mmm1 PD  ;PB  ;PA ///     (12)   

for  m=1,2,3;                                             

 ],)()[(

)()[(

54m16m3m

64m25m3m

kkkkkB

 ],kkkkkA








               (13) 

0.DBAP

kkkkkk2kD

2
m

2
m

2
mm

m2
2
5m16546m



 ),()]([ 
     (14) 

The PCA matrix    comprises the eigenvectors 
t

m3m2m1m ],,[  


: 

 
































332313

322212

312111

t
3

t
2

t
1









 





 for m=1,2,3.      (15) 

The direct АРСА for vectors   t
s3s2s1s CCCC ,,


, 

from which are obtained vectors t
s3s2s1s LLLL ],,[


, 

is: 
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
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















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3s3
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1s1
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s3

s2

s1

CC
CC
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L





        (16) 

for s=1,2,...,S, or .][][ Css mCL 
   

The components of vectors t
s3s2s1s LLLL ],,[


 could 

be processed in various ways (such as for example: 
decimation and interpolation, filtration, orthogonal 
transforms, quantization, etc.). In result are obtained 
the vectors t

s33s22s11s
q
s L,L,LLL )]()()([)(  


 

with components ),( s11
q

s1 LL   ,LL s22
q

s2 )(  and 
)( s33

q
s3 LL  , where (.)(.)(.) 321  , ,   are the 

functions of the used transform.  

For the restoration of vectors q
sL


 are used the 
functions for inverse transform of the components 

,LL q
s1

1
1s1 )(ˆ   ,LL q

s2
1

2s2 )(ˆ   )(ˆ q
s3

1
3s3 LL   and 

in result are obtained the decoded vectors 
t

s3s2s1s LLLL ]ˆ,ˆ,ˆ[ˆ 


.  

Using the inverse AРСА, the vectors sL

ˆ  are 

transformed into vectors t
s3s2s1s CCCC ],,[ˆ 

 : 
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2

1
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         (17) 

for s=1,2,…,S, or .ˆ.][ˆ
Cs

t
s mLC 

                                             
Here the matrix of the inverse AРСА is: 

          321
t1

333231

232221

131211




 

,,













 . (18)                                                       

For the restoration of vectors t
s3s2s1s CCCC ],,[ˆ 

  
through inverse AРСА are needed not only the 

vectors t
s3s2s1s LLLL ]ˆ,ˆ,ˆ[ˆ 


, but also the elements i j 

of the matrix ][ , and the values of 321 CCC ,,  as 
well. The total number of these elements could be 
reduced representing the matrix ][  as the product of 
matrices )]([ 1 , )]([  2 , )]([  3 , and the rotation 
around coordinate axes for each transformed vector in 
Euler angles  ,  and  correspondingly:  

   
 

     ),,()()()( 

























321

332313

322212

312111

   (19)                     

  where  

    ;
cossin

sincos
)(;cossin

sincos
)(













 














 










0
010

0
 

100
0
0

21

 












 


100
0
0

3 


 cossin
sincos

)( .          (20) 

In this case the elements of the matrix ][  are 
represented by the relations: 

;11  sinsincoscoscos      
;21  cossinsincoscos   

;sincos  31     (21) 
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;12  sincoscoscossin 
;22  coscossincossin   

;sinsin  32  ;cossin  13      

The matrix of the inverse АРСА is defined by the 
relation: 

        )()()(  
123

1 .            (22)                                                                      

Then, to calculate the elements of the inverse 
matrix 1][  is enough to know the values of the 3 
rotation angles ,  and , defined by the relations: 

;Φ1Φα 2
3332 




  arcsin  ;arccos 33   

.arccos 




  2

3313 1                          (23) 

In result, the number of values needed to calculate the 
matrix 1][  is reduced from 9 down to 3, i.e. 3 
times reduction. The elements s3s2s1 LLL ,,  for 
s=1,2,...,S comprise the pixels of the first, second and 
third eigen image in the sub-group of MS images 
with elements s3s2s1 CCC ,, . 
 
 
2.3 APCA without Coordinate System Origin 
Shift  
The famous PCA transform was initially developed 
for processing of digital data. When applied to 
images, some principal component pixel brightness 
could be negative due to the fact that the 
transformation is a simple axis rotation. As it is 
known, a combination of positive and negative 
brightness cannot be displayed, but together with this 
negative brightness pixels should not be ignored since 
their appearance relative to the other pixels in a 
component is needed to define details. The problem 
with negative values is accommodated by shifting the 
origin of the principal components space to yield all 
components with positive and thus displayable 
brightness. This has no effect on the transformation 
properties as can be seen by inserting an origin shift 
term in the definition of the covariance matrix in the 
principal components axes. Let us define: 

           ,0ss LLL


                                                (24) 
where 0L


 is the position of a new origin. In the new 

sL


 coordinates 
          },))({(][ t

LsLsL mLmLEK  


    (25) 
Then, 0LL Lmm


 , and: 

.Ls0L0sLs mLLmLLmL 
   Thus, 

][][ LL KK   - i.e., the origin shift has no influence 
on the data covariance in the principal components 
axes, and can be used for convenience in displaying 
principal component images.  

The direct and inverse APCA without coordinate 
system origin shift are obtained from Eqs. 16 and 17, 
where 0ss LLL


  is substituted for C0 mL 

][ . 
Then the direct and inverse APCA are represented by 
the relations below:  
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2.4 Evaluation of the Transformed Images 
Decorrelation after HAPCA with a 3×3 
Matrix 
For Level 1 of НАРСА the corresponding covariance 
matrices of size 3×3 for each group of vectors psC ,


 

for p=1,2,3 and s=1,2,...,S , are:  
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Here 
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Here p1
1

p1
1

p1
1

,,, ,,   are the corresponding eigen 
values of the covariance matrices ][ , p1

LK . 
The covariance matrix of size 9×9 for the 9-

component vectors sC


 calculated for the group of 
processed input images (GOP) for Level 1 of НАРСА 
with a 3×3 matrix, is represented as:  
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where t1
sp

1
sk

t1
sp

1
sk

1
LL LELELLEK
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}{}{}.{][ ,

,


         (33)    

for k,p=1,2,3;  kp is the mutual  covariance matrix 
of size 3×3 for the 3-component vectors 1

skL


 and 
1
spL


 from groups k and p in the Level 1 of НАРСА 
after rearrangement of the already obtained eigen 
images. 

For the Level 2 of НАРСА the covariance 
matrices of size 3×3 for each sub-group of 
rearranged vectors, obtained after performing the 
НАРСА Level 1 are: 
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The covariance matrix of size 9×9 for the 9-
component vectors sC


 for the group of processed 

input images (GOP) for Level 2 is: 

,

][][

][][

][][

][

,

,

,

,,

,
,

,

,

,

,,
,

,

,



































32
3

32
2

32
1

2
LL

2
LL

2
LL

22
3

22
2

22
1

2
LL

2
LL

2
LL

12
3

12
2

12
1

2
L

00
00
00

KK

K
00

00
00

K

KK
00

00
00

K

3231

3221

3121















 (35) 

     
t2

sp
2
sk

t2
sp

2
sk

2
LL LELELLEK

pk
}{}{}.{][ ,

,


             (36) 

for k,p=1,2,3 and  kp  is the mutual covariance 
matrix of size 3×3 of the 3-component vectors 2

skL


 
and 2

spL


 of groups k and p in the Level 2 of HAPCA 
after rearrangement of the obtained eigen images. 

Using the already obtained matrix ][ 2
LK  could be 

evaluated the decorrelation of the corresponding 
eigen images in the processed GOP. When full 
decorrelation is obtained, the matrix ][ 2

LK  is 
diagonal, for which should be satisfied the condition: 

      0LELELLEK t2
sp

2
sk

t2
sp

2
sk

2
LL pk

 }{}{}.{][ ,
,


     (37) 

for k,p=1,2,3;  k  p.  
The iterations of HAPCA could be stopped even 

without full decorrelation, if the condition below is 
satisfied: 

             ,|}{}{}.{|  2
p

2
k

2
p

2
k LELELLE


                   (38) 

where  is a pre-defined threshold. 
 
 
2.5 Algebraic Method for Calculation of 
Eigen Images Through АPCA with a 22 
Matrix 
For any 2 digital images of size S=MN pixels each, 
shown on Fig. 3, are calculated the vectors 

  t
s2s1s CCC ,


 for s=1,2,..,S (on the figure are 

shown the vectors for the first 4 pixels only, resp. 
  ,, t

21111 CCC 


  ,, t
22122 CCC 


  t

23133 CCC ,


 and 
  t

24144 CCC ,


). 

1C


2C


3C


4C


  
Fig. 3. Sub-group of 2 images from the original GOP 

Each vector is transformed into corresponding 
vectors   t

s2s1s LLL ,


 through АPCA using the 
matrix [] of size 22. Its’ elements ij are defined 
as follows:  
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1. The covariance matrix [KC] of size 22 for 
vectors sC


 is calculated: 

    

 
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where t
21c CCm ],[  is the mean vector and 





S

1s
ss x

S
1xEx )( - the mean operator.  

2. The elements of the mean vector cm  and the 
matrix [KC] are defined in accordance with the 
relations:   

 ,CCEkk  ,CCEkk 2
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2
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2
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s1111 )()()()(  (40) 

).)(()( 21s2s132112 CCCCEkkk                       (41)  

),( s11 CEC  ),( s22 CEC        (42) 

 3. The eigen values 21  ,  of the matrix [KC] are 
defined in accordance to the solution of the 
characteristic equation: 

.)()(||det 0kkkkkk 2
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2
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Since the matrix [KC] is symmetric, its eigen 
values are real numbers: 
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4. The eigen vectors 21 


,  of the covariance 
matrix [KC] are the solution of the system of 
equations below: 

  mmmCK 


  and 1
2

1i

2
mi

2
m 






, for m=1,2.(45) 

The solution of the system of equations (Eq. 45) is 
used to calculate the components of mth eigenvector 

  ,, t
m2m1m  


 which corresponds to the eigen 

value m  for m=1,2: 
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 (49)  

where ,21 kk   ,3k2  .22    

The divisors in Eqs. 48 and 49 should not be equal 
to zero, and for this the condition к3  0, has to be 
satisfied, i.e. vectors sC


 should be decorrelated.  

The PCA matrix    comprises the eigenvectors 
tt
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Then the matrix    is defined by the relation: 
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5. The direct АРСА for vectors   ,, t
s2s1s CCC 


 

from which are obtained vectors   t
s2s1s LLL ,


, is: 
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for s=1,2,...,S.  

6. In result of the inverse AРСА, vectors sL


 are 
transformed into vectors   t

s2s1s CCC ,


: 
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for s=1,2,…,S. 
Here the matrix of the inverse AРСА is: 
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7. The elements ij of the matrix    are a 
function of the angle  on which is rotated the 
coordinate system (1,2) in respect to the original, 

),( 21 CC , which follows from the АPCA transform. 
The matrix    could be represented by the relation:  
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where 
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In particular, if )21 kk (for  0   from Eq. 51 
follows, that 41arctg /)(    and then 

21 /sincos   ; the corresponding transform 
matrix is: 

          
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 11

11
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14)/( . 

From Eqs. (46–49 and 51) for s=1,2,...,S are 
obtained the relations:     

)],)(())()[(/( 2s21s1s1 CCCC21L    (56) 

)])(())(()[/( 2s21s1s2 CCCC21L   ,(57) 

where L1s and L2s are the pixels of the first and second 
eigen image correspondingly. 

Accordingly, from Eqs. (46-49 and 52) for 
s=1,2,..,S are obtained the pixels of both restored 
images:  

   ,])())[(/( 1s2s1s1 CLL21C    (58) 

   .C]L)(L))[(2/1(C 2s2s1s2    (59) 

From Eqs. (56-59) it is easy to notice that for the 
successful performance of the direct and inverse 
AKLT should be known the values of the parameters 
, , (or of the angle , and ,, 21 CC  respectively), i.e. 
3 numbers for one transform altogether.   

When the coordinate system is right-handed, and 
the rotated on angle  system – left-handed (the case 
of rotation with reflection), the rotation matrix of the 
direct KLT is of the kind: 

  .cossin
sincos

)()(
)()()( 









 





2212

2111

  
(60)

 

For 4/   this matrix is   





 11
11

2
14)/(  

and coincides with the Hadamard matrix of size 22. 
For the case when this matrix is used in Eqs. (56-59) 
the signs of the weight elements should be changed in 
accordance with the elements of the matrix from Eq. 
60. In this case, the direct and inverse АKLT are 
defined by the relations below: 

)],)(())()[(/( 2s21s1s1 CCCC21L     (61) 

)]CC)(()CC)()[(2/1(L 2s21s1s2  , (62) 

,])())[(/( 1s2s1s1 CLL21C       (63) 

.])())[(/( 2s2s1s2 CLL21C       (64) 

In order to avoid negative values for the components 
of vectors   t

s2s1s LLL ,


 they should be transformed 
in advance, in accordance to relations: 0ss LLL


  

( t
21C0 CCmL ],)].[([)].([  


). As a result Eqs. 

(56-59) become:  

      ],)())[(/( s2s1s1 CC21L    or 

      ,).(sin).(cos s2s1s1 CCL                               (65) 

      ],)()()[/( s2s1s2 CC21L    or 

      ,).(cos).(sin s2s1s2 CCL                            (66) 

       ],)())[(/( s2s1s1 LL21C    or 

       ,).(sin).(cos s2s1s1 LLC                              (67) 

       ],)())[(/( s2s1s2 LL21C    or 

       .).(cos).(sin s2s1s2 LLC                              (68) 
 
 
2.6 Algorithm for Hierarchical АPCA with a 
Matrix of size 22 
In this case the processing is performed as follows. 
First, the group of MS images is sub-divided into 
groups (GOP) of 8 images each, for which is 
supposed that they are highly correlated. On the 
other hand, each GOP is further divided into 4 sub-
groups.  

As it is shown on Fig. 4, on each sub-group of 2 
images from the first hierarchical level of HAPCA is 
applied АPCA with a matrix of size 22. In result 
are obtained 2 eigen images, colored in yellow and 
blue correspondingly. After that, the eigen images 
are rearranged so that the first sub-group of 2 eigen 
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images to comprise the first images from each group, 
the second group of 2 eigen images - the second 
images from each group, etc. For each GOP of 8 
intermediate eigen images in the first hierarchical 
level on each sub-group of 2 eigen values is applied 
in similar way the next APCA, with a matrix of size 
22.  In result are obtained 2 new eigen images (i.e. 
the eigen images of the group of 2 intermediate eigen 
images), colored in yellow, and blue 
correspondingly. Then the eigen images are 
rearranged again so, that the first group of 2 eigen 

images to contain the first images from each group 
before the rearrangement; the second group of 2 
eigen images - the second image before the 
rearrangement, etc. In result is achieved significant 
decorrelation for the processed group of images, 
which is a reliable basis for efficient 
compression/restoration (HAPCA is a reversible 
transform). For this is necessary to have information 
about the transform matrix, used for each couple of 
images in all hierarchical levels – 4 matrices for one 
GOP altogether. 

 

Fig. 4. Processing of a group of MS images with 3-level Hierarchical Adaptive PCA with a matrix of size 22 
 
 
Numerical example for НАРСА with a matrix of 
size 2×2 and GOP = 4. 
Let’s have a group of 4 matrix images [C1]  [C4] of 
size 22 (GOP=4) with pixels, whose values are: 

          
  







 24

32
1C1C
1C1CC

2221

1211
1 )()(

)()( , 

            







 32

23
2C2C
2C2CC

2221

1211
2 )()(

)()(  

           
  







 23

12
3C3C
3C3CC

2221

1211
3 )()(

)()( ,  

             







 42

21
4C4C
4C4CC

2221

1211
4 )()(

)()(  
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In Level 1 of НАРСА with a matrix of size 2×2 these 
images are divided into 2 sub-groups: [C1], [C2] and 
[C3], [C4], for which are calculated the vectors 

  t
s2s1s iCiCiC )(),()( 


 for s=1,2,..,4 and i=1,2: 

      - for the first sub-group [C1], [C2] (i=1) these are 
the vectors: 

  ;)(,)()( t
21111 31C21C1C 



  ;)(,)()( t
22122 21C31C1C 



 
  ;)(,)()( t

23133 21C41C1C 


  ;)(,)()( t
24144 31C21C1C 


 

         - for the second sub-group of images [C3], [C4] 
(i=2) – the vectors: 

  ;)(,)()( t
21111 12C22C2C 



 
  ;)(,)()( t

22122 22C12C2C 


 

              ;)(,)()( t
23133 22C32C2C 



 

              ;)(,)()( t
24144 42C22C2C 


  

For the first sub-group the covariance matrix )]([ 1KC  
of vectors )(1Cs


 is: 

     










 25003750

37506870
1k1k
1k1k1K

2221

1211
C ..

..
)()(
)()()(   

The elements kij(1) of this matrix are:  
,68701k1k 111 .)()(  ,25001k1k 222 .)()( 

.375.0)1(k)1(k)1(k 32112   
Hence, ,.)( 43701   ,.)( 75001   86801 .)(   

and the rotation angle for the coordinate system 
)(),( 1C1C s2s1  in result of APCA-1 is:    

      ... 52105740arctg
γ(1)α(1)

β(1)arctgθ1 









     

Then, 86705210 .).cos(   and ..).sin( 49805210   
The matrix of the direct APCA-1, used for the 
rotation of the coordinate axes )(),( 1C1C s2s1  on 
angle 1, is:   

    
  ...

..)( 



 



 86704980

49808670
cosθsinθ-
sinθcosθ1

11

11                                                                                                    

In this case, the direct transform of components 
)(),( 1C1C s2s1  of the vectors )(1Cs


 for s=1,2,3,4  

without shifting the origin of the coordinate system, 
is represented by the relations: 

         );(,)(.)( 1C49801C86701L s2s1s1      

         ),(,)(.)( 1C86701C49801L s2s1s2   

where )(),( 1L1L s2s1  are the components of the 
transformed vectors, )(1Ls


:  

         ;,.[)( t
1 3.597] 24001L 


  

         ;,.[)( t
2 3.228] 60511L 


 

          ;3.726] ,472.2[)1(L t
3 


 

          ;3.597] ,240.0[)1(L t
4 


 

From these relations are obtained the matrices 
][],[ 21 LL  of the corresponding eigen images:    

  ,..
..

)()(
)()(









 24004722

60512400
1L1L
1L1LL

2221

1211
1

  ...
..

)()(
)()(









 59737263

22835973
2L2L
2L2LL

2221

1211
2  

For the second sub-group the covariance matrix 
)]([ 2KC  of vectors )(2Cs


 is: 

  







 18710000

00005000
2k2k
2k2k2K

2221

1211
C ..

..
)()(
)()()(  

The elements ki j(2) of this matrix are: 

       ,502k2k 111 .)()(  ,18712k2k 222 .)()(   

       .)()()( 02k2k2k 32112    
Hence, ,.)( 68702  ,)( 02   68702 .)(  .  
Then, the rotation angle for the coordinate system 

)(),( 2C2C s2s1  obtained in result of APCA-2, is 
  ,00arctgθ2   for which 10 )cos(  and 

.)sin( 00    
The matrix of the direct AKLT-2, used for the 
rotation of the coordinate axes, is a single matrix:   

            .)( 







 10

01
cosθsinθ-
sinθcosθ2

22

22    

In this case, the direct transform of the vectors )(2Cs


 

for s=1,2,3,4 without shifting the origin of the 
coordinate system, is given by the relations: 

          ;)()( 2C2L s1s1   ),()( 2C2L s2s2    

where )(),( 2L2L s2s1  are the components of the 

transformed vectors )(2Ls


. From them are obtained 

the matrices ][],[ 43 LL  of the corresponding eigen 
images:    
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    ,)()(
)()(









 23

12
3L3L
3L3LCL

2221

1211
33

    .)()(
)()(









 42

21
4L4L
4L4LCL

2221

1211
44  

In this particular case the vectors )(2Cs


 from the 

second sub-group are decorrelated, because 
02k3 )( , and they coincide with the transformed 

vectors ),(2Ls


 while eigen images ][],[ 43 LL  

coincide with their corresponding initial images [C3], 
[C4]. 

By analogy with the algorithm from Fig. 4, the 
obtained eigen images from first and second group 
are rearranged, and after that they are divided again 
into 2 sub-groups: the first comprises the eigen 
images ][],[ 31 LL , and the second - ].[],[ 42 LL  
  - the vectors for the first sub-group of rearranged 
images [L1], [L3] (i =1) are: 

       ;.,.)( t
1 0224001L 


     ;.,.)( t
2 0160511L 


 

       ;.,.)( t
3 0347221L 


  ..,.)( t
4 0224001L 


 

  - the vectors for the second sub-group of rearranged 
images [L2], [L4] (i=2) are correspondingly: 

       ;.,.)( t
1 0159732L 


   ;.,.)( t
2 0222832L 


 

       ;.,.)( t
3 0272632L 


  ..,.)( t
4 0459732L 


 

In the Level 2 of HАРСА with a matrix of size 
2×2 on the rearranged vectors from first and second 
sub-group are performed APCA-1 and APCA-2 in 
similar way, as it was done in Level 1 of the 
hierarchical transform. 

For the first sub-group the covariance matrix 
)]([ 1KL  of the vectors )(1Ls


 is: 

       ...
..

)()(
)()()( 







 50002160

21609020
1k1k
1k1k1K

2221

1211
L  

The elements ki j(1) of this matrix are 
correspondingly:  

,90201k1k 111 .)()(  ,50001k1k 222 .)()( 
..)()()( 21601k1k1k 32112    

Hence, ,.)( 40201   ,.)( 43301   59101 .)(  . 
Then, the rotation angle of the coordinate system 

)(),( 1L1L s2s1  in result of APCA-1 is:    

       ... 41104360arctg
γ(1)α(1)

β(1)arctgθ1 









     

Correspondingly, 91604110 .).cos(   and 
..).sin( 39904110   The matrix of the direct AKLT-1, 

through which is done the rotation on angle 1 of the 
coordinate axes )(),( 1L1L s2s1 , is:   

       ...
..)( 








 91603990

39909160
cosθsinθ-
sinθcosθ1

11

11   

In this case the direct transform of the components 
)(),( 1L1L s2s1  of vectors )(1Ls


 for s=1,2,3,4 without 

shifting the coordinate system origin, is depicted by 
the relations: 

);(..)(..)( 1L39901L91601L s2s1s1   
),(..)(..)( 1L91601L39901L s2s1s2   

where )(),( 1L1L s2s1   are the components of the 
transformed vectors )(1Ls


:  

;,.[)( t
1 1.737] 99801L 


;,.[)( t
2 0.275] 87011L 


 

    ;,.[)( t
3 1.762] 46531L 


;,.[)( t
4 1.737] 99801L 


 

From them are obtained the matrices ][],[ 21 LL   of 
the corresponding eigen images: 

  ,..
..

)()(
)()(









 99804653

87019980
1L1L
1L1LL

2221

1211
1

  ...
..

)()(
)()(









 73717621

27507371
2L2L
2L2LL

2221

1211
2  

For the second sub-group the covariance matrix 
)]([ 2KL  of the vectors )(2Ls


 is: 

  ...
..

)()(
)()()( 










 18712990

29900980
2k2k
2k2k2K

2221

1211
L  

The elements ki j(2) of this matrix are:  
,09802k2k 111 .)()(  ,18712k2k 222 .)()( 

..)()()( 29902k2k2k 32112    

Hence, ,.)( 08812   ,.)( 59902   24312 .)(   
and then the rotation angle of the coordinate system 

)(),( 2L2L s2s1  in result of APCA-2 is:    

  ... 31918893arctg
γ(2)α(2)

β(2)arctgθ2 









     

Hence, 24803191 .).cos(   and 
..).sin( 96803191   The matrix for the direct 

AKLT-2, through which the coordinate axes 
)(),( 2L2L s2s1  are rotated on angle 2, is:   
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      ...
..)( 



 



 24809680

96802480
cosθsinθ-
sinθcosθ2

22

22   

In this case the direct transform of the components 
)(),( 2L2L s2s1  of vectors )(2Ls


 for s=1,2,3,4 

without shifting the origin of the coordinate system, 
is given by the relations: 

);(..)(..)( 2L96802L24802L s2s1s1    
),(..)(..)( 2L24802L96802L s2s1s2   

where )(),( 3L2L s2s1   are the components of the 
transformed vectors )(2Ls


:  

;,.[)( t
1 4.081] 00101L 


 ;,.[)( t
2 3.624] 12211L 


 
;,.[)( t

3 4.106] 00911L 


.,.[)( t
4 4.479] 97821L 


 

From them are obtained the matrices ][],[ 43 LL   of 
corresponding eigen images:    

  ,..
..

)()(
)()(












 97820091

12210010
2L2L
2L2LL

2221

1211
3

  ...
..

)()(
)()(









 47941064

62430814
2L2L
2L2LL

2221

1211
4  

All eigen images ][],[ 43 LL   from the first and 
second sub-group are rearranged again, in result of 
which are obtained the following images:  

],[][ 41 LE  ],[][ 12 LE  ],[][ 33 LE  ].[][ 24 LE   

The power of the rearranged eigen images 
][ 1E  ][ 4E  are: 

 6816E41P
2

1i

2

1j

2
1ij1E ;.)/( ,

 


 

;.)/( , 374E41P
2

1i

2

1j

2
2ij2E 

 

   

;.)/( , 872E41P
2

1i

2

1j

2
3ij3E 

 

   

..)/( , 302E41P
2

1i

2

1j

2
3ij4E 

 

      

Their powers, normalized towards 4EP  are 
correspondingly: 7.24, 1.89, 1.2, and 1.0. The powers 
of the components of images [C1], [C2], [C3], [C4] are 
correspondingly: 

;.)/( ,
 


2

1i

2

1j

2
1ij1C 258C41P  


 


2

1i

2

1j

2
2ij2C 56C41P ;.)/( ,  

;.)/( ,
 


2

1i

2

1j

2
3ij3C 54C41P  

,.)/( ,
 


2

1i

2

1j

2
4ij4C 256C41P  

and the corresponding powers, normalized  towards 
3EP , are: 1.83; 1.44; 1.0; 1.38. Hence, 

247P/ P 4E1EE .  and ,.831P/P 3C1CC   from 
which follows, that  ./ 4 CE    

This example shows that after applying 2-level 
HAPCA with a matrix of size 2×2, the relation  

)/( CE    for the eigen images of maximum and 
minimum power is 4 times higher than that for the 
original images of same kind. The power of the set of 
original images after their transform is concentrated 
in the first eigen image, and together with this, the 
power of the remaining eigen images in the set 
decreases rapidly.  
 
 
2.7 Generalization about the Algorithm 
HAPCA with a Matrix of size 22 for a Set of 
16-Component Vectors 
The algorithm HAPCA from Fig. 4 could be 
generalized for sets of S 16-component vectors 

t
s16s2s1s CCCC ],..,,[


 (s=1,2,..,S). These vectors 

could be calculated for a set of МS images, divided 
into groups (GOP), which comprise 16 images each. 
In this case, every group is divided into 8 sub-
groups, each of which contains S two-component 
vectors t

s2is1iis CCC ],[


 (i=1,2,..,8). Because of the 
large number of sub-groups used in the HAPCA with 
a matrix of size 22 algorithm, is necessary to 
increase the number of transform levels, compared to 
that of HAPCA with a matrix of size 33. As an 
example, on Fig. 5 is shown the algorithm for 3-level 
HAPCA with a matrix of size 22, applied on the set 
of vectors ,],[ t

s12s11s1 CCC 


 ,],[ t
s22s21s2 CCC 


.. 

.., t
s82s81s8 CCC ],[


 for s=1,2,..,S. 

In order to obtain higher decorrelation for 
vectors t

s16s2s1s LLLL ],..,,[


, is necessary the mutual 
correlation between vectors t

s2is1iis CCC ],[


 to be 
high enough. This could be achieved through 
preliminary space transform for vectors isC


so, that 

to obtain clusterization, for example, in accordance 
with the Least Squares Method. The 16-component 
vectors t

16s2s1ss LLLL ],..,,[


 obtained after 3-level 
HAPCA with a matrix of size 22 could be done 
shorter by retaining their most powerful coefficients 
only. The so obtained vectors could be used for 
pattern recognition in the reduced vector space. 
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11b 11a- 12a-
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 sC


sL


  
Fig. 5. Processing of a group of 8 vectors with Hierarchical Adaptive 3-level PCA with a matrix of size 22  

 
 

3 Experimental results 
On the basis of the 2-level HAPCA algorithm, shown 
on Fig. 1, were done experiments with sequences of 
MS images of size 512×512 pixels, 24 bpp. The 
sequence was divided into groups, each containing 9 
MS images. From them were obtained 218 vectors in 
each group, containing 3 MS images each.  

 As an example, on Fig. 6 is shown one of the test 
groups (Set 1), which contains MS Image1,..,Image 9. 

On Fig. 7 are shown the corresponding eigen MS 
images, obtained after applying the 2-level HAPCA 
algorithm on the group of images (Set 1). As it could 
be seen from the results shown on Fig. 7, on the first 
eigen MS image is concentrated the main part of the 
energy of all 9 images, and the energy of each next 
eigen image decreases rapidly. In Table 1 is given the 
power distribution of all eigen MS images in Set 1 
and the relative power distribution. 
 

 
Image 1 

 
Image 2 

 
              Image 3 

 
Image 4 

 
Image 5 

 
Image 6 
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Image 7 

 
Image 8 

 
Image 9 

Fig. 6. Group of 9 consecutive MS images in Set 1.

 
Eigen Image 1 

 
Eigen Image 2 

 
Eigen Image 3 

 
Eigen Image 4 

 
Eigen Image 5 

 
Eigen Image 6 

 
Eigen Image 7 

 
Eigen Image 8 

 
Eigen Image 9 

      Fig. 7. Еigen images, obtained for Set 3 after performing 2-levels HAPCA. 

 Table 1. Power distribution of all eigen MS images in Set 1, relative and cumulative power distribution in %. 

Name Level 2 (arranged) Relative power Relative power % Cumulative power % 
Eigen Im. 1 35499.0 148722 0.990390 99.039 
Eigen Im. 2 47.490 198 0.001320 99.171 
Eigen Im. 3 257.13 1077 0.007170 99.888 
Eigen Im. 4 13.97 58 0.000380 99.926 
Eigen Im. 5 22.0 92 0.000610 99.987 
Eigen Im. 6 3.00 14 0.000090 99.996 
Eigen Im. 7 0.57 2 0.000012 99.997 
Eigen Im. 8 0.26 1 0.000006 99.998 
Eigen Im. 9 0.23 1 0.000006 100.00 
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On the basis of data given in Table 1 are build the 
corresponding graphics, which represent the power 
distribution of all 9 eigen images, shown 
correspondingly on Fig. 8. The data in the last 
column of Table 1 show, that in the first 3 eigen MS 
images are concentrated 99,88 % of the total power 
of all 9 images in the GOP. 

 
Fig. 8. Relative power distribution for Set 1, Level 2 

(arranged) 

From Fig. 8 follows that the power of the first 
eigen MS image for Set 1 is more than 148000 times 
larger than that of each of the next 8 eigen images. 
The values for pixels of the еigen images, obtained in 
result of the direct 2-level HAPCA, were calculated 
with full accuracy, and after corresponding rounding 
could be transformed into 24-bit numbers.  Then, if 
on the 24 bpp еigen images is applied the inverse 2-
level HAPCA, the quality of corresponding restored 
images in GOP, evaluated by their Peak Signal-to-
Noise Ratio (PSNR), is  50 dB. This was confirmed 
by the results from Fig. 9, obtained for the еigen 
images in Set 1 of Fig. 8 after inverse HAPCA, 
following the algorithm, shown on Fig. 1. Hence, the 
group of 9 MS images could be restored with retained 
visual quality. 

 
Fig. 9. Evaluation of the quality of restored images 

from Set 1 with PSNR [dB], after applying inverse 2-
level HAPCA on еigen images from Fig. 7. 

Similar results were obtained for other sets of MS 
images: Set 2, Set 3,.., Set 7. This result illustrates the 
ability for efficient compression of a set of MS 

images, when HAPCA is used. The experimental 
results were obtained with the software 
implementation of HAPCA in Visual C.  
 
 
4 Evaluation of the 2-level HAPCA 
Computational Complexity  
The computational complexity of the 2-level 
HAPCA algorithm, based on matrices of size 33 
will be compared with that of the PCA algorithm 
with a matrix of size 99. Both algorithms are 
compared in respect to the performed number of 
operations O (additions and multiplications) [8] 
needed for the calculation of the following 
components: 

 covariance matrices [KC] – in total 6 for the 
first algorithm, each of size 33, and one matrix [KC] 
of size 99 – for the second algorithm;    

 eigen values and eigen vectors of the 
corresponding matrices [KC]; 

 eigen images of each GOP, obtained using 
both algorithms. 

On the basis of the computational complexity 
analysis given in [34] for APCA with matrix of size 
33 and for PCA with a matrix of size NN follows, 
that for the 2-level HAPCA with a 33 matrix and 
for the PCA with a 99 matrix, we have: 
        - The number of operations needed for the 
calculation of all elements kij for all 6 matrices [KC] 
of size 33 (for the 2-level HAPCA) and for one 
matrix [KC] of size 99 (for the PCA), is:  

.])()([)()( 5762N21NN1NN3NO 3Nk 


 (69) 
.])()([)()( 42302N21NN1NN

2
1NO 9Nk 


   (70)     

- The number of operations needed for 
calculation of the eigenvalues of matrices [KC] for 
the 2-level HAPCA and of the PCA [KC] matrix, 
when the QR decomposition and the Householder 
transform of (N-1) steps [34] were used, is:  

.)( 282NO 3Nval 


               (71) 

.))(()( 11247N
6

17N
3
41NNO 2

9Nval 


  (72) 

        - The number of operations needed for the 
calculation of the eigen vectors of matrices [KC] for 
the 2-level HAPCA and for the PCA matrix [KC], in 
case that iterative algorithm with 4 iterations is used, 
is correspondingly: 

      275.NO 3Nvec 


)(                    (73) 

     .66331-)52N(4NNNO 9Nvec 


][)(
    (74) 
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       - The number of operations needed for the 
calculation of a group of 9 eigen images (each of S 
pixels), obtained in result of the direct 2-level 
HAPCA and of PCA for zero mean vectors, is 
correspondingly: 

          .)()( S901N2SN6NO 3NHAPCA 
      (75) 

          .)()( S1531N2SNNO 9NPCA 
           (76) 

Then the total number of operations  for the 2-level 
HAPCA and for PCA is correspondingly: 

    
,

])()()()([)(

S901133S90275282576         

3O3O3O3O3 HAPCAvecvalk1




   (77) 

.

])()()()([)(

S15311996S153663311244239         

9O9O9O9O9 PCAvecvalk2





  
(78) 

The reduction of the total number of operations 
needed for the 2-level HAPCA, compared to that of 
the PCA could be evaluated using the coefficient :  

     .
)(
)()(

S901133
S15311996

3
9S

1

2






   (79) 

For example, for S=100 ;.)( 962100   for S=1000 
correspondingly 8111000 .)(   and ..)( 71  
Hence, 1(S) is at least 1.7 times smaller than 2(S) 
for each value of S (in average, about 2 times). 
 
 
5 Conclusions 
The basic qualities of the offered HAPCA for 
processing of sets of MS images are: 

1. Lower computational complexity than PCA 
for the whole GOP, due to the lower complexity of 
АPCA with matrices of size 2×2 and 3×3 compared 
to the case, for which for the calculation of the PCA 
matrix are used numerical methods [15]; 

2. HAPCA could be used not only for efficient 
compression of sets of MS images, but also for 
sequences of medical CT images, video sequences, 
obtained from stationary TV camera, compression of 
multi-view images [17], image fusion [21], face 
recognition [23], etc.; 

3. There is also a possibility for further 
development of the HAPCA algorithms, through: use 
of Integer PCA for lossless coding of MS images 
[18,19]; HAPCA with a matrix of size NN (N - 
digit, divisible to 2 or 3), but without using 
numerical methods, etc.  

For the further compression of the original group 
of eigen MS images could be used for example, the 
“Branched” Inverse Pyramid Decomposition (BIPD) 
[16,17] with nonlinear pre- and post-processing, 

based on the pixel-by-pixel Adaptive Histogram 
Matching transform.  
      In the future research work will be done software 
modeling and perfection of the HAPCA algorithm. 
The modeling and experiments will be performed for 
a large image database with image sequences/sets of 
various kinds. The so obtained results will be 
evaluated and compared to other similar algorithms 
and will be investigated possible new application 
areas: remote investigation of the earth surface, 
medical investigations, automatic manufacturing 
control, defense, etc. 
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